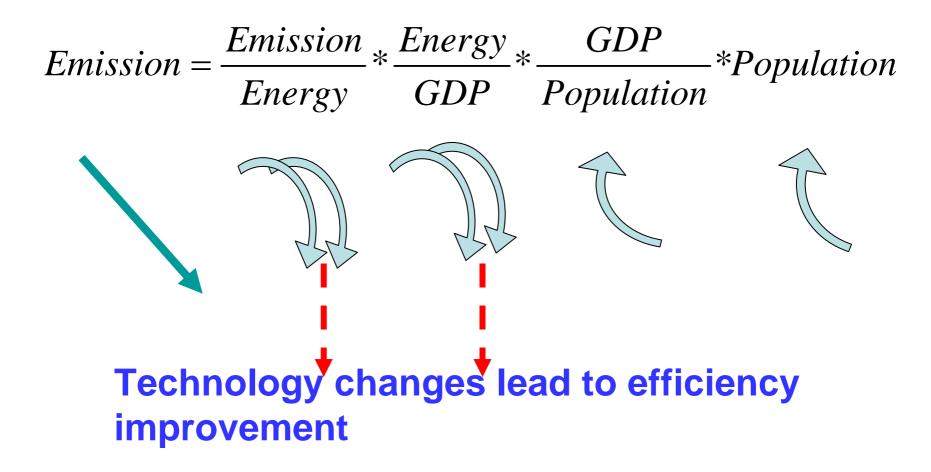
ECOSOC Special Event Achieving the MDGs and coping with the challenges of climate change UN Headquarters, New York, 2 May 2008

Views on Development and Transfer of Climate Sound Technologies

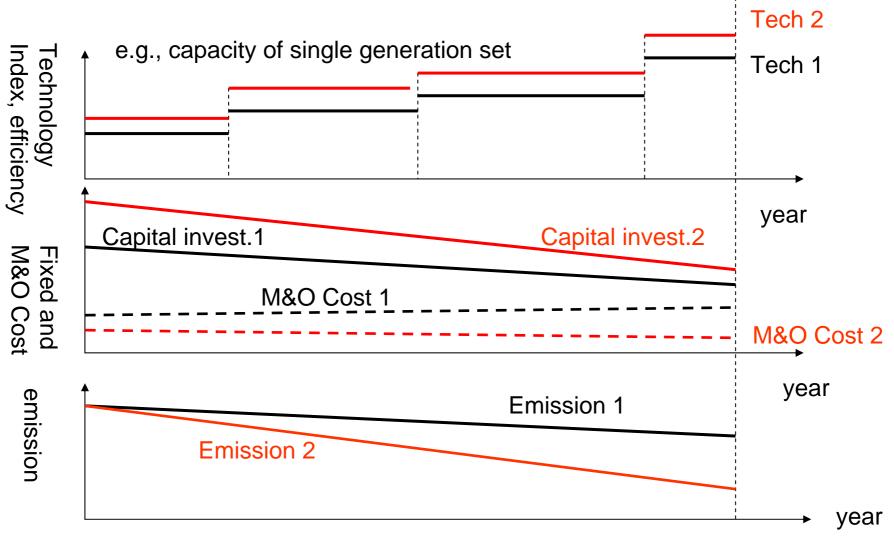
Ji Zou, Professor


School of Environment and Natural Resources Renmin University of China

Contents

- Why climate sound technologies (CSTs)?
- Understanding the CSTs: a whole package for effectiveness
- Categorizing technology-related activities and identifying leverage points
- Measuring effectiveness of D&D&T of CSTs
- Technology needs assessment: findings from a pilot study in China
- Enabling environment: promoting policies and innovative financing
- Fundamental challenge and barriers: market failure and others
- Needs for strategic innovation on international enabling mechanism

Technology change is the only way-out for developing countries


It's a matter of development paths: Conventional v.s. Innovative (SD) GHG Emission **Conventional path** Limits of GHGs emission How to make this shift? Innovative **Inputs:** SD path 1. Install low carbon technologies 2. Human resources 3. Policies and measures 4. Financial resources **GDP** per capita **Inevitable courses** 0

Urgency: Avoiding Lock-in effects

- Energy-intensive infrastructure sectors are easy to be locked-in: power, heating, airconditioning, transport system, buildings.....;
- The lifespan for infrastructure operation is very long: over several decades;
- Not easy to change the emission feature of existing infrastructure with very high replace costs
- Rapid and massive construction of infrastructure in developing countries, e.g., in China, cannot wait for a slow and modest CST flow into their economies, given the keen anticipation to improve living standards and alleviate poverty.

Concept of lock-in effects in Power Sector

relationship between capital investment, M&O cost, and efficiency/emission level

1. High carbon tech scenario; 2. Low carbon tech scenario.

CO2 Emission Reduction and Corresponding Technological Change and Capital Investment in Thermal Power Sector in china, 2020 and 2030

Technological options and changes in capacity (MW)		Small sets	Normal sets	Sub critical	Super critical	USC	IGCC	
2005		105943	103640	156768	17500	0	0	
BAU Scenario	2020	-72930	-20000	749000	0	0	0	
	2030	0	-50000	520000	0	0	0	
Tech Improving	2020	-72930	-70000	189000	200000	380000	30000	
Scenario	2030	0	-60000	0	0	430000	100000	
Capital Investment (bln USD)		2006—2020, 57 2006—2030, 135						
Accumulative CO2 reduction (Mt-CO2)		2006—2020, 998 ; 2006—2030, 2, 875						

Source: Ji Zou and S. Fu, 2008

Potential of Technology Change

- The gap of general energy efficiency between China (35%) and the OECD average (45%) is up to 10%.
- This shows a current potential for China to control its GHG emission by improving its energy efficiency with more efficient technologies available from developed countries.
- With large share of energy use and GHG emission, only several percentage points of improvement in energy efficiency may lead to significant GHG reduction.

Energy efficiency for major products in China, 1990 - 2004

energy consumption	China			Int'l standard	Gaps in 2004	
	1990	2000	2004		absolute	%
Thermal power generation Coal consumption (gce / kwh)	392	363	349	299.4	49.6	16.57
Power plant electric supply Coal consumption (gce / kwh)	427	392	376	312	64	20.51
alternating current consumption for Electrolytic Aluminum (kwh / t)	16233	15480	15080	14100	980	7.00
Steel (large firm) (kgce / ton)	997	784	705	610	95	15.57
cement (kgce / ton)	201.1	181	157	127.3	29.7	23.33
Crude oil process (kgce / ton)	102.5	118.4	112	73	39	53.42
Ethene (kgce / ton)	1580	1125	1004	629	375	59.62
synthetic ammonia (kgce / ton) (large scale)	1343	1327	1314	970	344	35.46
Paper and cardboard (kgce / ton)	1550	1540	1500	640	860	134.38

Source: Qinyi Wang, International Petroleum Economics, 2006, NO.2

Understanding Climate Sound Technology: A Whole Package for Effectiveness

CSTs' Nature: providing for climate benefit as global public goods

- Climate benefits are core returns of CSTs;
- More rapid and effective development, transfer, diffusion, and deployment of CSTs in developing countries are of great importance to protect global climate as global public goods;
- These global public goods are shared and enjoyed by both developed and developing countries; and
- It may be regarded as an efficient global allocation of technology resources to curb global warming.
- We need to find out an innovative mechanism to realize the above global allocation of technologies efficiently and effectively.

CSTs work as a whole package

CST may include:

- Hardware: devices, equipment, process, etc.;
- Software: IPRs, designs, know-how,;
- Enabling environment: mechanism, policies, appropriate institutional arrangement; and infrastructure
- Human resources: awareness, well trained and qualified; and
- Financial resources to make D&T&T happen.

Category of Technologies

• By stage of technologies

- Invention: earlier/pioneer/basic R&D,
- Innovation: R&D for pre-competitive, demonstration
- Diffusion: marketing, deployment,
- Application: in place to produce environmental and commercial benefits
- By sectors: differences in scale of capital, intensity of knowledge, intelligence, and corresponding market structure (perfect, imperfect and monopoly market)
- By owners: public sectors vs private sectors
- By mechanism for transfer and development:
 - trade,
 - FDI,
 - innovative pattern (PPP)

Different types of technologies may apply to

different stakeholders and policy instruments

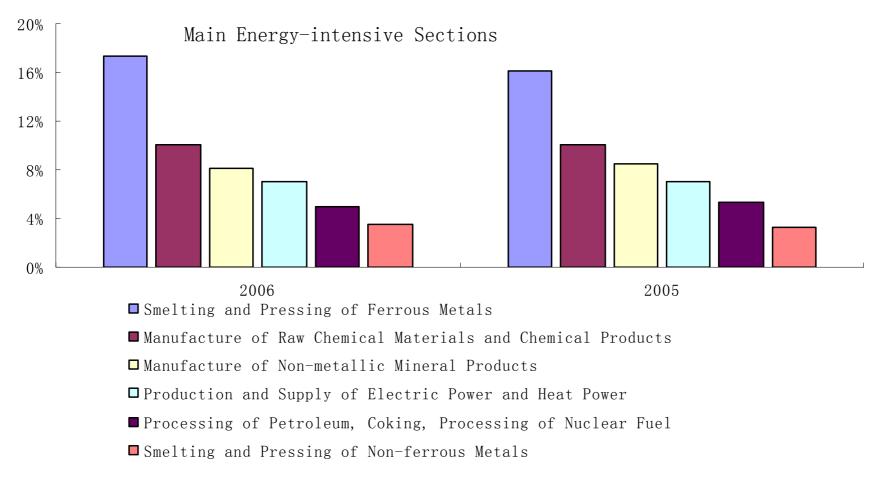
Stage of tech	Invention	Innovation	Diffusion and
dimensions	R&D	R&D (demo)	Deployment
Stakeholder	Research institutes and Universities	Large company, Research inst., Universities, joint venture	Companies, Brokers,
Financial resources	Public	Public finance	Company
	finance for	Company invest.	investment,
	R&D	Venture capital	Bank, stock, bonds
Policy instruments	Subsidies, Planning, awareness	Subsidies, planning, norms, permit, standard, directorate,	Taxation, pricing, competition promotion, permit, norms,

Leverage points of int'l technology cooperation

They may be in all the stages of technology lifecycle:

- Basic scientific researches;
- Joint R&D for demonstration;
- Joint design of manufacture and urban planning
- Dissemination: market tapping, increasing penetration by transfer, diffusion, and deployment of CSTs; and
- Full application (or even commercialization).

Some leverage points in China 1


- Joint R&D to provide for strategic technology backup for medium and long-term development, e.g., CCS, PV, Fusion, etc.
- Joint smart manufacture design and urban planning for more efficient technology application
- Enlarge penetration of current available lowcarbon technologies in markets by
 - Overcoming market obstacles related to int'l transfer and cooperation of CSTs
 - Innovative international regime as enabling environment, including incentives and financial mechanism

Some leverage points in China 2

- Infrastructure sectors, such as power, transport, and construction/building should be paid an urgent attention.
- Streamlined designs at strategic, policy, and technological levels are crucial
- Integrating:
 - water strategies, policies and investment with adaptation
 - CO2 mitigation with air quality and energy security

Key Energy Intensive Sectors in China

- Industry used about 71% of the total energy in 2005 and 2006;
- and the following 6 sectors account for 72% of the industrial energy use, more than 50% of the total energy use in China.

Data source: China Statistics

Some important fields in China

- Integrated assessment and design:
 - global VS local concerns;
 - technologies VS economy;
 - transportation VS urban planning
- Advanced coal technologies: linking with desulphurization and NOx reduction and CCS (IGCC, CFB, breeze)
- High efficient vehicle
- Implementation of building/construction energy conservation
- Energy intensive manufacture sectors (metals, cements, chemical products, etc.)

Primary technology needs assessment in China: findings from a pilot study by RUC

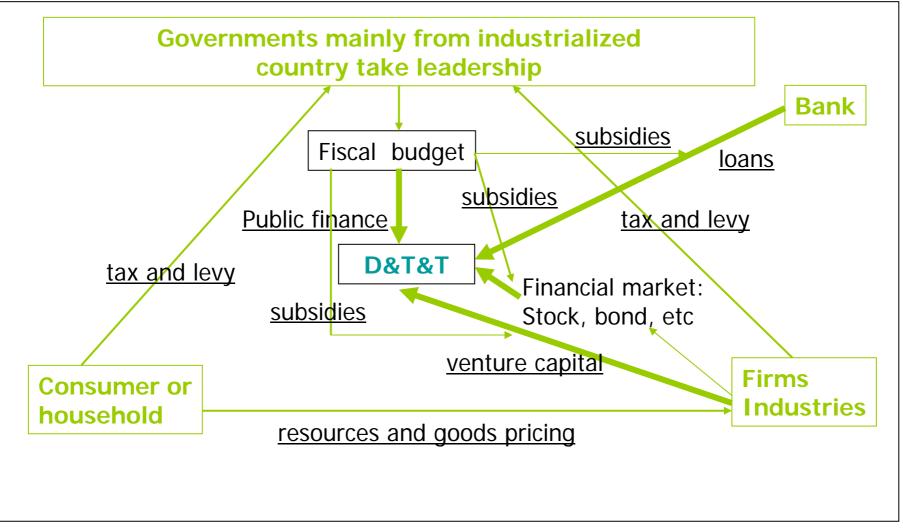
List of some technology needs

Sectors	Technology	Degree of technology diffusion in China	Degree of technology diffusion worldwide	Abatement potential	Cost information
Industrial boilers	High-efficient coal-fired industrial boilers	Medium (the scale of boiler manufactures is mainly small and key technologies such as coal combustion devices and automatic control devices are lack).	High	5-10%	Estimated cost for the retrofit project is 60 billion Yuan
Cement industry	NSP cement kiln technology package	High (but technical level in key technology fields still lags behind such as the automatic control device and the overall operation level).	High	15%	Estimated cost for the retrofit project is 100 billion Yuan

District cogeneration	combined heat-power- cool system based on gas-steam combined cycle	Low	Medium	Emission reduction rate is more than 20% compared to	Total cost of cogeneration will be lower than the separate production of heat and power, but	
eogeneration	heat-electricity-coal gas triple co-supply system	Low	High	regional heating	the corporate profits will depend on the pricing mechanism for heat and electricity	
	cogeneration technology using biomass	Low	Medium	boilers		
Transportatio n	The technologies for the more efficient gasoline and diesel engine	Medium	High	10%-20%	Increase by 10%	
	The technologies of diesel engine for cars and light trucks and the technologies to produce high quality diesel	Low	High	20%-30%	Increase by 20%	
	Light-weight Vehicle Technology	Low	Middle	5%-10%	Increase by 10%	
	Homogeneous charge compression ignition engine technology	Low	Low	10%-20%	Not clear	
	Advanced and efficient transmission system	Low	Middle	10%-30%	Increase by 20%	

Building materials	Technology for Oxy- fuel Combustion in Glass Furnace.	Very few by now	High	20%—30%	Increase by 30%
Petroleum and chemistry	Technologies for natural-gas-based chemical products (except for methanol and acetic acid)	Very few by now	High	10%—15%	Increase by 20%
Electric Motor System	Medium and Large size frequency modulated equipment(MLFME)	Around 5% in 2006	High	11mt-C/year, 50TWh/year in 2010	300 to 600yuan/kW
	Direct Current Permanent Magnet Brushless Electric Motor(DCPMBEM)			Electric saving is around 8.8TWh in 2010	higher than normal electric motor
Green Lighting Program	white light conduct LED	Very few by now		Electricity saving is 100TWh, 3.45Mt-C, NOx 0.5million ton, SO2 6.75million ton	32yuan by 2006, and then 24yuan by 2020
Iron and steel	low calorific value gas combustion turbine technology	low		20%	6 hundred million
Cement	the steam turbine units	medium		5-10%	

Building	technologies and materials of heat- insulation of external walls	low	20-30%	50-200yuan/m ² higher than usual
	the ground source heat pump system	medium	40-50%	500 yuan/m ²
Petroleum oil industry	Highly efficient heat exchangers and burners	Low	15-20%	Investment will be 2.25 ~ 3.20 billion yuan at crude oil processing capacity of 45Mt
Petrochemical Industry Petrochemical industry	New type energy saving and separating technology for ethylene industry	Low	Approximate ly 10%	Technical renovation for a 4.0Mt capacity project calls for an investment of 810.0 million yuan
	radiant short tubes for ethylene cracking furnace use	Medium	5-10%	Technical upgrading of the existing SRT-II and SRT-II furnace calls for an investment of 580.0 million yuan
Iron and steel industry	production energy management center	Low	15-20%	Investments in a total of 10 large- and medium-sized companies totaling 2.0 billion yuan


Source: Zou Ji, et al., 2008

How to measure the effectiveness of D&D&T?


- Speed of technology flow
 - Considering to avoid lock-in effects in developing countries
 - Needed time for innovation (R&D) and diffusion
- Range of technology flow
 - Covering most of the meaningful sectors
 - Larger market share and penetration
- Effectiveness
 - Emission reduction
 - Affordable cost and expected benefits

Enabling Environment: Promoting Policies and Innovative Financing

The roles of different stakeholders in financing D&T&T

Financing leverage points based on technology cycle

Needs for innovative mechanism as part of international climate regime

Objectives: Win-win

to speed up, widen, and enlarge international technology cooperation to catch the historic opportunities, meanwhile ensure the poor to be better off and the companies to make profits and boom economies.

Needs for strategic innovation on international enabling mechanism

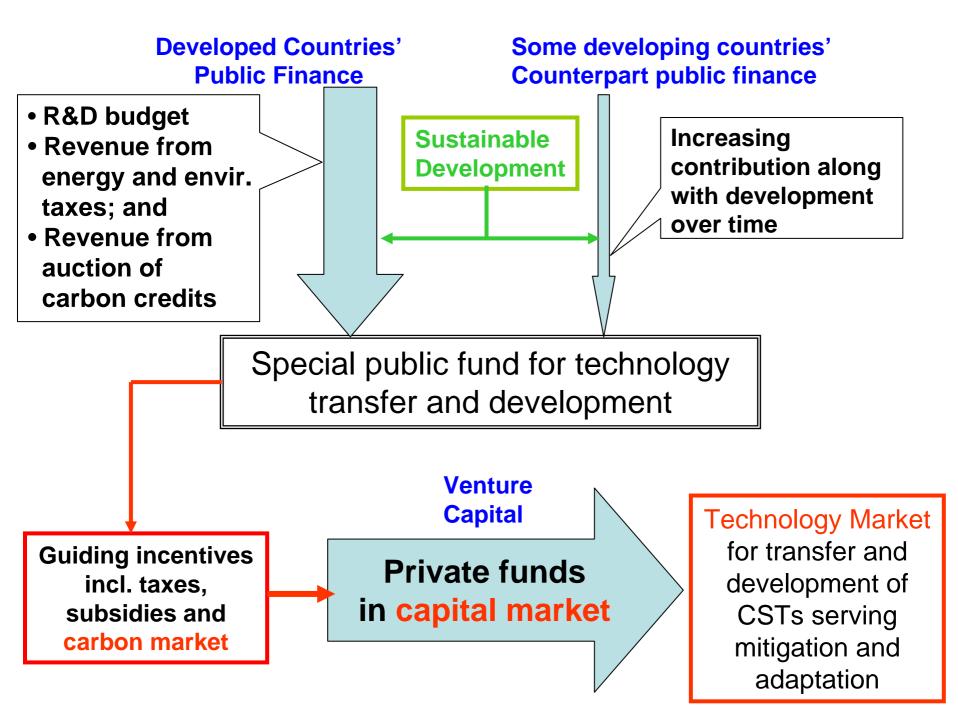
- Intergovernmental cooperation remains a major driving force;
- <u>Guiding and providing for incentives to</u> private sectors are core task of intergovernmental cooperation
- <u>PPP: Innovative financing to curb market</u> <u>failure</u>
- <u>A roadmap to innovative int'l mechanism</u>

Intergovernmental cooperation 1

- Enhance mechanism within UNFCCC: need a more effective and implementation-oriented body to:
 - Provide for advices, guidance, and recommendation;
 - Coordinate actions by different international stakeholders and governments, e.g., fiscal policies;
 - Promote communication and info/knowledge sharing; and
 - Monitor and assess the performance and progresses.
- Cooperation on other bilateral and multilateral bases

Intergovernmental cooperation 2

With priorities on:


- Policy dialogues and coordination for better incentives to private sectors and markets;
- Financing basic research and R&D; and
- Direct transfer and diffusion of publicly owned technologies.

Guiding and providing for incentives to private sectors

- Tax exemption for CSTs exports of companies in developed countries;
- Subsidies to encourage R&D and transfer of CSTs;
- Favored conditions for CST-related export credits: guarantee for technology export credits, subsidies, etc.;
- Removal of technology export bans; and
- Other policies and measures.

Innovative financing to curb market failure

- Public finance may play a crucial role in guiding and attracting private financial resources into D&D&T of technologies
- A PPP frame for financing D&D&T of technologies may be feasible to link public and private finance; and
- A range of financial instruments may be applied for financing D&D&T.

A Framework for Financing D&D&T of CSTs

			-			•		
financial sources	policy instruments	challenges to address	specific targets	typical technologies	stage of technologies	barriers for D&D&T	adequacy and performance assessment	solutions
Public	fiscal budget: ODA & additional for CC; subsidies for T&T,GEF, Tax exemption; R&D, Gov't guarantee for Export Credit, venture investment etc	CB, LDC, small islands, adaptation, R&D, market tapping, infrastructure, etc	1.CB,2. R&D in strategic areas, 3. catalyzer of T&D, kick-off market; 4. prototype/pilot/ demonstration, 5. adaptation, 6. policy development	pre- commercial or pre- competitive techs in power, transport, building (infrastructure), adaptation tech, etc.	basic researches; pre- competitive and in process of commercializa- tion	political will	Effectiveness: scale, speed, and range	to improve awareness of politicians and the public , increase scale via current tunnels and potential new pipelines.
Private	FDI incl. CDM, trade of IPR, service and product, and C- credits; fund and loans from commercial banks, venture invstment	massive investment	substantial GHG reduction with a win-win manner	manufacture sector: end user technologies	pre-competitive and in process of commercializati on; commercialized	1.market force, 2. technical capacity, 3.export permits, 4. others	 Guidance and incentives; Effectiveness: Scale, speed, and range 	1. Guidance from gov'ts policies; 2. enforcement of laws; 3. incentives; 4. breaking negative market forces (limit monopoly)
PPP	combination of public and private financial resources: joint venture, subsidies, managing C- market, funds,	attract private investment in climate public goods	guiding financial flow into the targeted areas	Infrastructure: power, transport, building, and relevant energy intensive technologies	R&D, Market tapping; Massive investment; etc.	market force	Effectiveness: scale, speed, and range.	Initiatives by governments: cooperation between the North and the South.

Fundamental Obstacles: market failure

- If the commercial returns of CSTs are not high enough to attract private investors who normally own most technologies and/or financial resources, what should we do?
- How to address the trade-off between IPR protection and climate protection?
- The existing market mechanism is not adequate enough to speed up, widen, and enlarge technology flow from developed to developing countries for taking earlier and more effective actions

Managing externality: general approaches

- Internalizing externality
 - Impose taxes or levy charges on public bads (GHG emissions)
 - Impose taxes or levy charges on beneficiaries of public goods
- Subsidies by transfer payment: based on earmarking environmental and income (from the rich) tax/levy
- Define environmental property right: cap & trade system

Preliminary identification of barriers of technology transfer

- barriers from provider side
 - Political will and politician and entrepreneur's awareness on global public goods
 - Technology export ban
 - Market forces: e.g. monopoly tendency by technology owners
 - Very high expectation for revenue
 - Inadequacy of economic incentives from public policies

Preliminary identification of barriers of technology transfer

- Barriers from receiver side
 - Awareness
 - Knowledge and information
 - human resources
 - Financial resources
 - Lack of monitoring and enforcement of technological norms and regulations
 - Lack of economic incentives: taxation, clarification of PR, including IPR
 - Divided institutional arrangement
- Infrastructure Barriers
 - Transportation and telecommunication
 - Enabling legal basis and policies

Conclusions

- Establish and operate a Special Intergovernmental Body for D&D&T of CSTs under COP of UNFCCC;
- Develop an involvement mechanism for owners, developers, and potential receivers of CSTs and policy makers;
- Identify prioritized strategic areas of CSTs by TNAs;

Conclusions (Cont'ed, 1)

- Develop a special PPP financial system to combine and bridge:
 - public finance (mainly from developed parties)
 - Combining markets for carbon permits, CST, and capital

Conclusions (Cont'ed, 2)

- Select appropriate financial instruments and pipelines
 - Share-holding in climate sound projects
 - Venture capital to invest in R&D of CSTs
 - Funds
 - Bonds
 - Insurance for adaptation
 - Long-term soft loans
 - Others
- Initiate series of programs/schemes targeting at specific technological areas in developing countries

Thank you for your attention!

zouji@ruc.edu.cn or zouji61@126.com

